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ABSTRACT

Live coding performances provide a context with 
particular demands and limitations for music making. In 
this paper we discuss how as the live coding duo aa-cell 
we have responded to these challenges, and what this 
experience has revealed about the computational 
representation of music and approaches to interactive 
computer music performance. In particular we have 
identified several effective and efficient processes that 
underpin our practice including probability, linearity, 
periodicity, set theory, and recursion and describe how 
these are applied and combined to build sophisticated 
musical structures. In addition,  we outline aspects of our 
performance practice that respond to the 
improvisational, collaborative and communicative 
requirements of musical live coding.

1. INTRODUCTION

For the past two years we have been performing as aa-
cell, a live coding duo, in regular concerts around 
Australia. Our performances are semi-improvised 
collaborations using the Impromptu environment, 
developed by Andrew Sorensen.
 Live coding is a practice where software that 
generates music and/or visuals is written and 
manipulated as part of the performance. It emphasises 
the expressive possibilities afforded by programming 
languages as a means for defining and manipulating 
music and/or visual processes. Live coding of music is 
a-stylistic in principle, although as with all practice, a 
chosen medium leaves its imprint on output.  In this 
paper we will explain how we manage the effect of 
medium and intent in our musical practice.
 Collaborative live coding places particular demands 
on the creative process because it requires a shared 
vocabulary to facilitate directed musical exploration. In 
this paper we will outline the results of our approach to 
working effectively within the constraints of our 
practice in the hope that the techniques we have 
developed (or accumulated) will inform other computer 
musicians and, perhaps more importantly, may highlight 
issues regarding, a) parsimonious computational 
representations of music and, b) practical approaches to 
interactive computer music.

2. BACKGROUND

Discussions of live coding as a practice have come to 
the fore in recent years [14][3][10][13]. The practice of 
live coding, building code structures during 
performance,  is similar to what Wang and Cook [33] call 
on-the-fly-programming, and McLean [13] refers to as 
just-in-time programming. Most of these discussions 
have focused on the dynamic nature of live coding and 

how various programming environments have been 
developed to facilitate live coding. They emphasise the 
need for a highly interactive environment,  the ability to 
dynamically vary processes at runtime, and a strong 
concern for robust and flexible timing structures. In this 
paper we will discuss how we exploit these and other 
features of the Impromptu environment and leave 
detailed technical discussion about how this is achieved 
to other previous [27] and forthcoming papers.
 With regard to live coding practice some approaches 
and issues are discussed by Collins [14] and Collins and 
Olofsson [15]. Collins [14] focuses especially on the 
performer/audience relationship and aa-cell adopt a 
similar stance to that suggested by Collins (after 
McLean [13]) where code is projected and other 
measures are taken to engage the audience. The article 
by Collins and Olofsson is particularly concerned with 
their audio visual live coding and the capture, 
segmenting and synchronizing of audio and visual 
material during performance. In aa-cell’s practice (so 
far) there is no coding of visuals, however, 
synchronisation is important to our collaboration even 
though it is more directed and less agent-based than that 
discussed by Collins and Olofsson.
 Looking further afield, aa-cell’s live coding practice 
is informed by work in interactive music [25] [32] and 
hyperimprovisation [17] with which it shares an interest 
in the role of the computer in live performance. Our 
approach differs from this work not only in its “on the 
spot” programming but also with regard to the role of 
the computer. Our practice is less concerned with 
instilling the machine with musical “intelligence” to 
listen and respond, and is more akin to composition in 
real-time. The literature on algorithmic composition is, 
therefore, a rich source of inspiration for our work 
(Hillier and Isaacson [20], Xenakis [34], Berg [1], 
Dodge and Jerse [19], Cope [16], Taube [30]).
 The approach of aa-cell to live coding combines 
composition and performance practices. This is in 
contrast to the batch-compile process that Paul Lansky 
once referred to as “sort of improvising in real-slow 
time” [9]. Rather, live coding for aa-cell is composition 
in real-time. However, it is not enough to simply 
consider the compositional aspects of the process. Live 
coding is a performance practice and we must also 
control the algorithmically generated material.
 Our approach revolves around setting up generative 
processes, and the dynamic nature of live coding allows 
the performer to direct these processes. Live 
programmers not only write the code used to generate 
the music, they also constantly change and modify the 
behavior of that code dynamically throughout the 
performance.  In this way the live programmer controls 
higher level structure, directing processes like a 
conductor directs an ensemble. 
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 This is, for us, one of the most interesting aspects of 
our performance practice. The programmer is intimately 
involved in not only defining the process (as in standard 
computer music programming practice) but also in 
controlling its execution and evolution. 
 This focus on directing a real-time musical outcome 
through code has required us to seek out flexible 
computational control structures, and simple processes 
that can be combined to yield rich musical results. In 
particular we have settled on probability, linearity, 
periodicity, set theory, and recursion as useful 
techniques. While these techniques are not unique, we 
have settled on them after exploration of numerous 
approaches [26][4][5][6][7][8]. We have found that by 
re-engaging with these techniques in a dynamic 
performance context we achieve new levels of intimacy 
with these processes and with code as a medium of 
musical expression.

3. MUSICAL COMPUTATIONS

The search for pattern and structure in music has 
produced a large body of research from both the 
computer music community and the music theory 
community at large. Generally this research has been 
focused on analysis, an identification of structure after 
the fact. While this is an important approach (much 
maligned by undergraduate music students) the 
structural descriptions can often be quite detailed, and 
live coding requires succinct description. As well,  many 
of the results of music analysis are contextually limited, 
whereas for live coding we need the power of fewer 
generic methods wherever possible.
 Overall, succinct representation has become a 
central tenant of our live coding practice.  The 
limitations of how much typing can be done during a 
live performance mandate parsimonious solutions for 
both musical and systems design considerations. As well 
the improvisational nature of the practice demands that 
techniques are memorised, so the utility of a limited set 
of processes across a variety of circumstances is 
important.
 Also of importance is modularity.  In aa-cell’s live 
coding practice performances are constructed by 
building up complexity over time. In order to facilitate 
this process, it has been necessary to have a set of 
techniques that can be combined in a variety of ways to 
form musical patterns at multiple levels of hierarchy. In 
a sense,  these form the atomic elements of our musical 
construction.

 Live coding practice requires that we become fluent 
with these tools, so that we are free to concentrate on 
musical, rather than technical, expression. In a sense 
these base processes have become the symbols of a new 
dynamic scoring environment based in code, to be 
manipulated symbolically as composers may manipulate 
structures in more traditional common practice notation. 
 Far from feeling restricted by simpler techniques, 
we have been energised by this re-engagement with 
elementary processes. These primary functions have re-
introduced an intimacy of process and a connection with 
medium; often lost in the higher level abstractions of 
more complex processes. This effect maybe due to a 
forced return to a more restricted compositional tool-set, 
a release from the tyranny of choice, or possibly due to 
our perception of a closer fundamental relationship to 
structure. Whatever the deeper reasoning, this 
parsimonious approach has resonated with us and has 
resulted in a live-coding vocabulary centred around 
elementary notions of probability, linearity, periodicity, 
set theory,  and recursion. We will briefly explore some 
of these “atomic” processes and provide some practical 
examples of their use in aa-cell’s practice.

3.1. Probability

It is 50 years since Leonard Meyer wrote “Emotion and 
Meaning in Music”, a seminal work in the field of music 
perception. In this work, Meyer [23] contends that 
musical style is a system of sound relationships  
commonly understood and used by a group of people. 
He describes these sound relationships as “complex 
systems of probability relationships in which the 
meaning of any term or series of terms depends upon it’s 
relationships with all other terms possible within the 
style system” [23]. Computer music composers and 
theorists have made extensive use of probabilistic 
techniques from the birth of computer music in the 
1950’s [20] through to the present [31][21]. we draw on 
this heritage to make extensive use of probabilistic 
techniques in our live coding practice.
 One revealing approach that we have found is the 
“random” test. If we replace algorithm X with a random 
number generator, do we achieve any degradation in 
output and, if so, what scale of degradation? What is the 
musicality of algorithm X compared to noise? In our 
explorations to date we have found this to be an 
extremely revealing test. Our experience suggests that 
many algorithms, especially those not derived from 
music analysis,  do poorly in this test. Often we have 
found that the mapping of data to parameters is more 
musically significant than the data being consumed. 
 As a result we have found that simple probabilistic 
functions, in particular linear and gaussian distributions, 
can provide effective variety and interest.  It is worth 
noting that our use of probability is often subtle and 
usually highly constrained. Randomness provides two 
useful functions in our practice, 1) the function of non-
determinism for the provision of structural novelty and 
variation and, 2) the less commonly discussed role of 
abstraction, where it provides the most practical means 
for abstracting away many of the details of performance 
nuance and human inaccuracy. We do not mean to 
suggest that a simple random selection is the best 
computational mechanism for handling performance 
parameters; only that when used subtly it can often 

 

Figure 1. The Impromptu development environment



provide adequate variation,  making it a useful tool for 
live programming.

;; A Simple diatonic progression - 1st Order Markov
(define chords
   (lambda (degree)
      (play-chord 60 80 3 
                  (pc:diatonic 0 '^ degree) 
                  *second*)
      (callback (+ (now) *second*) 'chords
                (random (cdr (assoc degree 
                                    '((i v7 iv ii)
                                      (ii v7)
                                      (iv ii v7 i)
                                      (v7 i))))))))

 The example above demonstrates how simple 
probabilistic techniques can be used to succinctly realise 
musical goals.  A simple first order Markov model from 
diatonic musical theory provides a simple process for 
harmonic progression. Most of the examples that follow 
will also make use of probability.

3.2. Linear & Higher Order Polynomials

In his book “Structural Functions in Music”, Wallace 
Berry [2] outlines some of the relationships between 
Linear function and musical structure. He discusses 
these relationships in pitched, rhythmic and timbral 
material at multiple perceptual levels [2].  Linear 
functions are generally applied to abstract 
representations of features that are often based on 
perceptual scales, even if the underlying physical 
properties are non-linear. For example, chromatic or 
diatonic pitch organisation can be linear even though 
pitch frequency relationships are not. aa-cell use linear 
functions extensively across all musical elements; pitch, 
duration, amplitude, timbre and so on.  We also make use 
of higher order polynomials and splines.
 Linear functions are often applied via break point 
envelopes to provide temporal structure at many levels 
in an aa-cell performance, ranging in duration from 
milliseconds (microstructure) to an entire work 
(macrostructure) [34].  The code below demonstrates a 
simple looped pitch cell generated from an envelope. 
Although this is a trivial example it does outline two 
important practical benefits that envelopes provide for 
outlining pitched material; (a) they naturally coordinate 
rhythmic and pitch variation and (b) by changing the 
modulus values it is possible to loop subsections of the 
envelope as a method of motivic development.

;; simple pitch quantized envelope
;; with randomized rhythmic performance
(define melody
   (lambda (env pos)
      (play-note (now) zeb1
           (pc:quantize (floor (env (fmod pos 8)))
                        '(0 2 4 5 7 9 11))
           80 3000)
      (callback (+ (now) (random '(7500 5000)))
                'melody env 
                (+ pos (random '(.25 .5))))))

(melody (make-envelope (vector 0 60 3 72 5 79 8 60)) 
        0)

 Often aa-cell use pitch envelopes in conjunction 
with a gaussian-random whose mean follows the 

envelope and whose standard-deviation is either fixed or 
changed over time by an auxiliary envelope, with the 
final result often quantised to a pitch class set.
 Some of our other common applications of 
polynomial functions include using two curves for 
tendency masks, specifying upper and lower boundary 
conditions [1] and for controlling synthesis parameters.

3.3. Periodic Functions & Modular Arithmetic

Another family of functions common to musicians are 
the periodic functions. We exploit periodic functions as 
a means for generating structure in all aspects of 
musical form - pitched, rhythmic, structural and timbrel. 
These functions have a range of applications for the live 
coder, including metric pulsation and pitch cell 
extraction as well as more common usages such as low 
frequency oscillation for timbrel (synthesis) variation. 
Like polynomial functions, periodic functions can 
provide subtle contours through to grandiose gestures 
and when combined with various probabilistic tricks can 
produce engaging performance results.
 One aspect of periodic structure that aa-cell 
regularly exploit is the “composers pulse” [11]. By 
mapping a cosine function to amplitude it is possible to 
provide a metric pulse to a regular pattern. Multiple 
levels of metric information can be easily provided by 
mapping multiple periodic functions simultaneously. 
Further, Clynes [11] showed that these same functions 
can be applied to other rhythmic elements such as note 
duration and tempo. In fact our experience suggests that 
it is only through interaction at multiple musical 
dimensions that an engaging musical performance is 
obtained.
 One common aa-cell application is to use a cosine 
function on note amplitude to provide a metric pulse to a 
regular pattern, such as a hi-hat part.  Modifying the 
period of the oscillation probabilistically produces 
subtle yet engaging syncopation in the rhythmic pattern.
 Another, pitch based trick, is to use an oscillator for 
selecting drum samples, occasionally changing the 
oscillation rate in order to modify the drum pitch 
pattern, while retaining a constant rhythmic pattern. As 
with most of aa-cell’s live coding techniques the interest 
in these simple structures comes from a combination of 
constant localized change and larger scale regularity. 
The example below uses an oscillator to choose drum 
samples and amplitudes. 

;; a trivial drum machine
(define drum-machine
   (lambda (time p)
      ;; period drum pattern changes each 4 beats
      (play-note (now) kit 
                 (+ 50 (* 6 (* cos (* time p pi))))
                 (+ 60 (* 20 (* cos (* time p pi))))
                 2000)
      (case (fmod time 4.0)
            ((0 2.5) ;; kick
             (play-note (now) kit *kick* 80 5000))
            ((1 3) ;; snare
             (play-note (now) kit *snare* 80 5000)))
      (callback (+ (now) 11025) 'drum-machine 
                (+ time .25)
                (if (= 0 (fmod time 4.0))
                    (random '(2 3 4 5))
                    p))))

 



 Modular arithmetic is another tool which aa-cell use 
to control the regular cycles common to musical 
structure. The example above demonstrates the use of 
modulus for locating the beat position within a 4/4 bar. 

3.4. Set Theory (Pitch Class Sets)

Set theory has become a standard tool in 20th Century 
music composition [29]. aa-cell make extensive use of 
set theory for manipulating pitch space (tonal or 
otherwise) [22]. Pitch Class Sets (PCS) provide a simple 
yet powerful tool for manipulating musical patterns. 
 By applying common musical devices such as 
inversion, expansion/contraction, retrograde and 
transposition to a musical cell, or motif, and then 
filtering the output though a PCS quantisation process it 
is possible to rapidly develop interesting musical 
sequences with high level structural control. The simple 
example below outlines the probabilistic, two octave 
transposition of a musical *cell* within the bounds of 
*pcs*.

(define *cell* '(60 62 63)s)
(define *pcs* '(0 3 7 8 10))

;; random two octave transposition of *cell*
;; with random choice of mutation to *cell*
(pc:transpose 
    (random -7 7)
    (random (list *cell*
                  (invert *cell*)
                  (retrograde *cell*)
                  (expand/contract *cell* 
                                   (* 5 (random)))))
    *pcs*)

3.5. Recursion & Iteration

Recursion and iteration provide many opportunities for 
repetition, evolution, pattern programming and 
grammars, and they are fundamental to notions of 
computational time.
 Like almost anything we can conceive of, it is 
possible to think of music as a collection of processes 

arranged in some form of hierarchical structure that 
unfolds through time. To a large extent it is the 
arrangement of these processes that defines the 
organisation of sound that we describe as music. As 
Wallace Berry notes,  “Musical structure may be said to 
be the punctuated shaping of time and space into lines of 
growth, decline and stasis hierarchically ordered.” [2 pp.
5]. 
 Our live coding makes extensive use of 
Impromptu’s ability to precisely schedule closures (a 
function and its environment) for future invocation.  The 
ability to schedule functions self referentially was first 
discussed by D. Collinge in reference to his Moxie 
system [12]. Using this mechanism functions1  may 
continuously re-schedule their own invocation. The 
ability for a function to call itself self referentially is the 
basis of recursion. Impromptu supports scheduled 
recursions which move through time at a governed rate, 
we refer to these as “temporal recursions.” Impromptu 
uses the callback2 function to provide this functionality. 
 The asynchronous nature of Impromptu’s temporal 
recursion model results in a natural cooperative multi-
tasking whereby multiple temporally recursive 
processes operate in a quasi-concurrent manner. 
Musically, this means that we can have numerous 
independent musical lines running in parallel.  By 
retaining their arguments between invocations, temporal 
recursions can maintain their state. This provides an 
intuitive and encapsulated mechanism for maintaining 
change over time.

;; play a one octave chromatic scale
(define scale
   (lambda (pitch)
      (play-note (now) synth pitch 80 8000)
      (if (< pitch 72)
          (callback (+ (now) 10000) 'scale 
                    (+ pitch 1)))))

;; start scale on middle C
(scale 60)

 

1 Impromptu also allows continuations to be scheduled providing functionality similar to a co-routine.

2 Impromptu’s callback is similar to Moxie’s cause function

Figure 2. aa-cell in performance.



 We make extensive use of temporal recursion in our 
practice, providing us with three primary advantages. 

3.5.1. On-the-fly modification of code

 The first advantage is the ability to redefine a 
temporally recursive process on-the-fly. Because the 
scheduler will always invoke the most recent definition 
of any given function,  aa-cell can modify the behavior 
of a temporal recursion by simply redefining the 
behavior of it’s target function. This is a simple and 
intuitive behavior inherent in Impromptu’s temporal 
recursion model and allows real-time programmers to 
build, extend and modify code on-the-fly.

3.5.2. Constantly adjustable control rate

 A second major advantage of temporal recursion is 
the ability to change the rate of recursion.  When a 
function schedules itself for future invocation it 
specifies a delay time. This delay time can be adjusted at 
any stage, either through random variation,  or some 
other deterministic process and, through this change, 
modify the rate of recursion. The most trivial application 
of this ability is to playback a series notes where 
arguments to the function provide new pitch and 
duration information. The pitch and duration are used to 
render a note, and then the duration is again used to 
specify the time of the next invocation of the function. 
Suitably modified arguments are retained for the next 
invocation. 

;; a chromatic one octave random walk
;; crotchet and quaver rhythm in samples
(define melody
   (lambda (pitch duration)
      (play-note (now) piano pitch 60 duration)
      (callback (+ (now) duration) 
                'melody
                (range-limit (+ pitch (random -1 2)) 
                             60 72)
                (random '(22050 44100)))))

;; start the temporal recursion
(melody 60 44100)

 What makes this such a valuable technique is its 
inherent just-in-time behavior, vital in live coding 
practice as it defers computation and facilitates complex 
interplay between concurrent processes.

3.5.3.Temporal graphs

 The third major advantage of temporal recursion is 
the ability to modify a temporal recursion’s target 
closure on-the-fly. This is a powerful technique that aa-
cell use to control higher level structure in live 
performance.  By altering the “course” of a temporal 
recursion—by modifying the target function of the 
callback—it is possible to change a processes direction 
in a trivial manner. At it’s simplest one can think of an 
example whereby two functions have an equal chance of 
calling themselves, or their opposite, setting up a 
temporal recursion which moves, with a probabilistic 
weighting between two functions. There is, however, no 
reason to limit the available paths to only two choices 
and more sophisticated decision mechanisms can be 
used. This is somewhat analogous to timed Petri Net’s  
and can be used to implement Markov processes, 
augmented transition networks or other graph-like 

structures where functions operate as nodes with 
transitions to arcs defined by callback functions.

;; func-a always repeats 10 times 
;; then calls back to func-b
(define func-a
   (lambda (cnt)
      (print "in func a" cnt)
      (callback (+ (now) 1000) 
                (if (> cnt 9) 'func-b 'func-a)
                (if (> cnt 9) 0 (+ cnt 1)))))

;; func-b has a 50/50 chance 
;; of calling into func-a or func-b
(define func-b
   (lambda (cnt)
      (print "in func b" cnt)
      (callback (+ (now) 1000) 
                (random '(func-a func-b))
                cnt)))

;; start temporal recursion
;; note that we can call func-a
;; multiple times to start
;; multiple concurrent recursions
(func-a 0)
 
 The code example above demonstrates a simple 
temporally recursive transition network. The network 
contains two nodes, the functions part-a and part-b, each  
maintaining it’s transition conditions specified within 
the callback function.  In this example, func-a is called 
and must recall itself ten times before passing control 
(calling) to part-b, which then has a 50/50 chance of 
calling itself or calling back into part-a.  This simple 
technique provides a useful mechanism for building 
higher level musical structure on-the-fly.

4. PERFORMANCE PRACTICES

In addition to the computational approaches inherent in 
aa-cell’s practice, there are a number of performance 
considerations that do not impact so much on the 
musical result but on the effectiveness and presentation 
of performances.

4.1. Code Expansion

One problem that all live programmers must deal with is 
how to physically type the required code within a 
reasonable period of time; reasonable for both the 
audience but,  probably more importantly, to assist the 
performer to more rapidly realise ideas.
 In addition to the parsimonious and efficient 
algorithmic descriptions discussed in section 3,  an 
obvious way to deal with this issue is to abstract away 
as much detail as possible into pre-built functions and 
libraries. This “preparation” is an important aspect of 
live-coding and aa-cell regularly spend time working on 
library code.  However, the downside with this approach 
is that abstracting away the ideas restricts our ability to 
change, modify and re-evaluate the code during the 
performance.  We spend a good deal of any given 
performance modifying and extending code structures, 
in fact a performance may well be based around the 
constant manipulation of a single temporal recursion. 
 Given that code is our medium, and that abstracting 
away code reduces our range of expression we have 
been using code expansion as a complimentary 

 



technique to functional abstraction. Code expansion 
allows aa-cell to program the essential elements of an 
expression and abstract away the remaining details to a 
code template. The template generates code based on the 
arguments supplied to the template. Once the generated 
code is pasted into the environment we can interact with 
it as normal; executing, extending and running it as we 
would any other code. Our code expansions cover a 
basic set of regular usage patterns including melodic, 
chordal and rhythmic structures. Code expansion 
provides aa-cell with an efficient mechanism for 
customising common usage patterns and has proven 
itself to be a huge benefit in performance as it allows us 
to concentrate on the essential details without having to 
worry about writing boiler plate code.

4.2. Non-programmable control

While text programming languages can be an effective 
medium for expressing processes and structures, their 
textual nature makes them less capable of handling rapid 
change. The issue of rapid change in live programming 
is of continuing concern for live programmers. As 
Fredrik Olofsson states, “I feel I’d have to rehearse a lot 
more to be able to do abrupt form changes” [24]. In our 
experience the problem may be more intractable than 
this. While we have been able to find methods,  such as 
code expansion and functional abstraction, for 
adequately reducing the time spent defining higher level 
formal structures, there is a severe physical limit to the 
amount of immediate change available in a text based 
environment.  To be clear, we are not suggesting that 
immediate change cannot be “programmed”, we do this 
regularly, but as live programmers our ability to respond 
immediately is limited by the time required to make and 
evaluate source code changes.

4.2.1.Editor tools

 We ameliorate this situation, in part,  by providing 
functionality in the text editing environment. For 
example, Impromptu allows programmers to set up to 
ten mark points. These marks can be set, moved to and 
have their underlying expressions evaluated with key 
bindings. This provides for rapid movement around the 
text editing environment and allows programmers to 
evaluate text that maybe located outside of the current 
viewable text region or even in another text buffer.

4.2.2.External controllers

 Text editing features only go so far in providing 
real-time programmers with the ability to affect 
immediate change. To augment, or provide better 
gestural control,  we can also employ external control 
surfaces with various dials,  faders, buttons and so on. 
Impromptu can communicate to these via MIDI or OSC 
as required. We have developed code libraries to 
facilitate the direct assignment of external controllers to 
pre-bound global symbols. In practice this allows aa-cell 
to trivially assign controller values to arbitrary code, 
providing real-time gestural control at any point in our 
code.

;; play a series of notes with random pitch 
;; bounded by the current value of 
;; controller 1 and controller 2
(define melody
   (lambda ()
      (play-note (now) piano 
                 (random ctrl1 ctrl2) 
                 60 22050)
      (callback (+ (now) 22050) 'melody)))

 In particular we have found that control surfaces 
with motorised controllers allow two way 
communication between musician and computer. 
Manual control can update assigned values, and 
programatic variations can be reflected in automated 
movement of the motorised controllers.
 It is worth emphasising that the interactive,  real-
time influence exerted on the generative algorithms at 
play is, we believe, central to our live coding practice.

4.3. Colaboration & Communication

Like any performance practice, live coding requires 
coordination between the performers and consideration 
of how the audience relates to the performance practice. 

4.3.1. Collaboration

 The major consideration regarding collaboration 
between performers in aa-cell relates to synchronisation, 
timing and data sharing. At a global level this often 
includes tempo, meter, harmonic progressions and other 
structural features. Impromptu supports a number of 
mechanisms for communication between remote hosts. 
 In recent years Open Sound Control (OSC) has 
become a de-facto standard for musical communication 
and provides a convenient mechanism for 
communication between Impromptu hosts and a variety 
of other computer music tools supporting the OSC 
protocol. 
 Impromptu also offers an Inter Process 
Communication (IPC) mechanism for communication 
directly between remote processes. This provides a 
powerful mechanism for sharing and executing code 
across remote Impromptu hosts. In practice this allows 
aa-cell to share functions and global variables during a 
performance.  More specifically the IPC mechanism 
allows us to define functions and variables in each 
other’s Scheme interpreter.  Unfortunately this powerful 
feature is limited without the ability to view and edit the 
associated source code.  
 In order to resolve this issue, aa-cell anticipate the 
future addition of a collaborative text editing 
environment to the Impromptu IDE3. This would 
provide live programmers with the ability to work 
collaborative on a single source code file 
simultaneously. We anticipate this to be a significant 
addition that would allow live programmers to work 
together in a more substantially collaborative 
environment.  However, that said, aa-cell also enjoy 
exploring the separation of environments. 
 Impromptu’s precise timing and interactive 
environment encourages users to “perform.” By this, we 
mean that aa-cell often work without the safety net of 
networked time codes, shared harmonic structures etc. 
and instead concentrate on performing our individual 

 

3 For a good example of collaborative text editing see the SubEthaEdit text editor http://www.codingmonkeys.de/subethaedit/ 
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environments by manually timing the execution of code, 
manually adjusting tempo and metre, and interacting in 
a constant dialogue of harmonic and timbrel change 
within a vocabulary of shared musical queues. No doubt 
our continued exploration of live coding practice will 
continue to oscillate between fixed and freer forms of 
coordination. 

4.3.2. Audience Communication

 In order to enhance the audience appreciation of aa-
cell performances we have adopted a number of 
performance conventions. As has become standard in 
live coding practice we project the computer displays so 
that the audience can see the code being typed. We try to 
make the code as legible as possible.
 However, even with a strongly technical audience, 
complete comprehension of the generative ramifications 
of the source code being run during a performance is 
challenging. Knowledge of the programming language, 
the environment, the algorithms used, musical, sonic 
and more general cultural knowledge, even knowledge 
of individual performers practice are all necessary for a 
complete mapping of the projected code to the musical 
outcome. Consequently, most audiences will struggle to 
fully realise the connections between the code and any 
generated material.
 Critics of live coding have suggested that this makes 
the projection of the source code an unnecessary and 
intrusive endeavor.  Our experience is that despite 
people’s inability to understand the detail of the code, 
they appreciate that the work is being built up as it 
proceeds and seem to enjoy participating in identifying 
symbolic queues. To this end we make an effort to use 
function and variable names that people will recognise 
and that may assist in their interpretation of the code. 
Symbol names such as “outrageous-kick” and “grunge-
it-up” never fail to communicate our intent! Regardless 
of the audiences’ level of understanding, code projection 
highlights to the audience that structures are coded 
during the performance. This is particularly important at 
this early stage in the development of live coding as a 
musical practice.
 To further enhance the appreciation that live coding 
builds structure on the fly we always start our 
performances with a blank text editor. We feel that the 
growing complexity of the typed code paralleled by the 
increasing complexity of the sonic outcome helps to 
articulate the building process to the audience. In 
addition, the Impromptu environment has text hi-
lighting features that not only assist the programmer, but 
the audience to see where the programmers attention 
(cursor) is positioned and to indicate when functions are 
evaluated.

5. CONCLUSION

In this paper we have outlined the theoretical and 
practical aspects that are significant in our live coding 
practice as aa-cell.  The paper has focused particularly on 
processes related to musical structure and event level 
considerations and discusses some of the techniques that 
aa-cell have found useful for defining musical processes 
in a live coding performance.
 We are certainly not the first people to discuss the 
usefulness of simple mathematical functions for 
modeling musical behaviors and it is perhaps 

unsurprising that aa-cell would find these functions 
useful in our practice. What has been a surprise to us, 
however, is just how much utility a small set of 
processes have provided. It is possible that our success 
with these simple functions is due to our manual control 
of higher level structure through our manipulation of 
running process,  but it may also point to a more 
profound revelation about parsimonious computational 
representations of music and improvisational 
performance.  We hope to expand more on these ideas in 
the future.
 Many of the performance aspects of live coding 
practice are still being hotly debated and aa-cell are still 
actively considering the pro’s and con’s of various 
performance related issues. However, we feel confident 
that as the practice matures, and audiences become more 
familiar with this new practice, these issues will resolve 
themselves. In the mean time we are busying ourselves 
with music making.
 This article has provided several brief, and 
necessarily trivial code examples. We have provided a 
web page http://impromptu.moso.com.au/icmc-
examples.html with supplementary material relating to 
this paper, including expanded code examples and 
related audio recordings. We hope this will provide 
more compelling documentation for the interested 
reader. Screen casts of complete live coding 
performances can also be found on the Impromptu 
website [28].
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